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1. Introduction

The paper presents the current stage of the development of VerICS, a model checker for real-time and
multi-agent systems. Depending on the type of a system considered, the verifier enables to test various
classes of properties - from reachability of a state satisfying certain conditions to more complicated
features expressed by formulas of (timed) temporal, epistemic, or deontic logics. The model checking
methods implemented include both SAT-based and enumerative ones (where by the latter we mean these
consisting in generating abstract models for systems). Our first work [3] presenting VerICS dealt mainly
with verification of Real-Time Systems (RTS). In this paper we focus on VerICS’ new features, i.e., SAT-
based model checking for Multi-Agent Systems (MAS), and several extensions to RTS verification.

A survey of model checkers for RTS can be found in [17]. Considering MAS verification, VerICS is,
to our best knowledge, one of the three existing model checkers for verifying MAS directly, and the only
one which applies SAT to this aim. The other two: MCMAS [12] and MCK [6] implement BDD-based
verification methods. Some other tools like CASP [1, 21] or MABLE [21] enable translations from MAS
to languages accepted by “general purpose” model checkers like Spin or JavaPathFinder.

The rest of the paper is organised as follows. In Sec. 2 we briefly present the theoretical background
of the SAT-based verification methods implemented in our tool (i.e., bounded and unbounded model
checking). The next two sections contain a description of the system: Sec. 3 presents the architecture
of VerICS, whereas Sec. 4 gives an overview of the tool. Next, in Sec. 5 we provide some experimental
results obtained for several typical benchmarks used to test efficiency of model checkers. Finally, Sec. 6
contains a summary and some concluding remarks.

2. Theoretical Background

A network of communicating (timed) automata is the basic VerICS’ formalism for modelling a system
to be verified. Timed automata are used to specify RTS (possibly with clock differences expressing
constraints on their behaviour), whereas timed or untimed automata are applied to model MAS (possibly
extended in a way to handle certain features of interest, like deontic automata in [9]).

The tuples of local states of the automata in a network N define the global states of the system
considered. The set of all the possible runs (i.e., infinite evolutions from a given initial state) of an RTS
modelled by N gives us a computation tree which, after labelling the states with propositions from a
given set PV which are true at these states (i.e., changing the tree into a model), is used to interpret the
formulas of timed or untimed temporal logics (like CTL or TCTL) expressing properties to be checked.
In the case of modelling a MAS we augment the model with epistemic or deontic accessibility relations.
The resulting structure enables us to interpret formulas involving temporal operators, epistemic operators
- to reason about knowledge of agents [5], and deontic operators - to reason about correctness of their
behaviour.

SAT-based verification methods represent the models and properties of systems in the form of boolean
formulas in order to reduce the state explosion. These for MAS involve bounded (BMC) and unbounded
model checking (UMC). Currently, VerICS implements UMC for CTLpK (Computation Tree Logic with
knowledge and past operators) [8], and BMC for ECTLKD (the existential fragment of CTL extended
with knowledge and deontic operators) [9, 16, 22, 23] as well as TECTLK (the existential fragment
of timed CTL extended with knowledge operators) [13]. Considering verification of RTS, the current
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version of VerICS offers BMC for proving (un)reachability [24] (also for timed automata with clock dif-
ferences [25]), and UMC for proving CTL properties for slightly restricted timed automata [19]. Below
we present some more details of BMC for ECTLKD and UMC for CTLpK. Verification of TECTLK
formulas is performed by reducing TECTLK model checking problem to ECTLK model checking
problem, and following BMC procedure shown below (see [11] for details).

2.1. Bounded Model Checking

Bounded Model Checking (BMC) is a symbolic method aimed at verification of temporal properties
of distributed (timed) systems. It is based on the observation that some properties of a system can
be checked over a part of its model only. In the simplest case of reachability analysis, this approach
consists in an iterative encoding of a finite symbolic path (computation) as a propositional formula. The
satisfiability of the resulting propositional formula is then checked using an external SAT-solver.

Consider a system consisting of n agents such that the local states of each agent are divided into
allowed or disallowed. The sets of allowed (green) and disallowed (red) states of the agent i, denoted
respectively Gi and Ri, are disjoint; moreover, the set Gi is nonempty. Let G be the set of global states
(i.e., tuples of n local states) of the system under consideration, g0 be its initial state, Q ⊆ G be the set
of states reachable from g0, T ⊆ G×G be a transition relation, ∼i,∼O

i ⊆ G×G (for i = 1, . . . , n), be,
respectively, the epistemic and deontic accessibility relation1, and V : G→ 2PV be a valuation function.
Moreover, let for k ∈ IN+ a k-path be a finite sequence of k + 1 states π = (g0, . . . , gk), where gi ∈ G
for i = 0, . . . , k and (gi, gi+1) ∈ T for each 0 ≤ i < k. For a k-path π = (g0, . . . , gk), let π(i) = gi for
each 0 ≤ i ≤ k. By Πk(g) we denote the set of all the k-paths starting at g. We assume that the reader
is familiar with the standard syntax and semantics of CTL, CTLK, CTLKD, and CTLpK (details can
be found in [10]). In order to restrict the semantics of ECTLKD to a part of the model we introduce the
following definition:

Definition 2.1. Let M = (G, Q, g0, T,∼1, . . . ,∼n,∼O
1 , . . . ,∼O

n , V ) be a model and k ∈ IN+. The
k−model for M is defined as Mk = (Q, g0, Pk,∼1, . . . ,∼n,∼O

1 , . . . ,∼O
n , V ′), where Pk is the set of all

the k-paths of M over Q, i.e., Pk =
⋃

s∈Q Πk(s), and V ′ = V |Q.

In order to identify k-paths that represent infinite paths we define the function loop : Pk → 2IN as:
loop(π) = {l | 0 ≤ l ≤ k and (π(k), π(l)) ∈ T}, which returns the set of indices l of π for
which there is a transition from π(k) to π(l). Then, we define a bounded semantics of ECTLKD (we
omit here the operators D,E and C):

Definition 2.2. Let Mk be a k−model and α, β be ECTLKD formulas. Mk, s |= α denotes that α is
true at the state s of Mk. Mk is omitted if it is clear from the context. The relation |= for modal operators
is defined inductively as follows:

1Two global states g, g′ are in the relation ∼i if they share the same i-th local states, and are in the relation ∼O
i if the i-th local

state of g′ is green (i.e., it is in Gi)
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s |= EXα iff (∃π ∈ Pk(s)) π(1) |= α,
s |= EGα iff (∃π ∈ Pk(s))(∀0 ≤ j ≤ k)(π(j) |= α and loop(π) 6= ∅),
s |= E(αUβ) iff (∃π ∈ Pk(s))(∃0 ≤ j ≤ k)

(
π(j) |= β and (∀0 ≤ i < j)π(i) |= α

)
,

s |= Kiα iff (∃π ∈ Pk(ι))(∃0 ≤ j ≤ k)
(
π(j) |= α and s ∼i π(j)

)
,

s |= Kl
iα iff (∃π ∈ Pk(ι))(∃0 ≤ j ≤ k)

(
π(j) |= α and s ∼i π(j) and s ∼O

l π(j)
)
.

Model checking over models can be reduced to model checking over k-models. The main idea of BMC
for ECTLKD is that we can check ϕ over Mk by testing the satisfiability of the propositional formula
[M,ϕ]k := [Mϕ,g0

]k ∧ [ϕ]Mk
, where the first conjunct represents (a part of) the model under consider-

ation and the second a number of constraints that must be satisfied on Mk for ϕ to be satisfied. Once
this translation is defined, checking satisfiability of an ECTLKD formula can be done by means of a
SAT-checker. Typically, we start with k := 1, test satisfiability for the translation, and increase k by one
until either [Mϕ,g0

]k ∧ [ϕ]Mk
becomes satisfiable, or k reaches the maximal depth of M .2

2.1.1. Translation

Below, we provide some details of the translation. Given a MAS represented by a network of automata.
Each global state g of the system can be represented by w = (w[1], . . . , w[m]), for some m ∈ IN+,
(which we shall call a global state variable), where each w[i] for i = 1, . . . ,m is a propositional variable.
A sequence w0,j , . . . , wk,j of global state variables is called a symbolic k-path j.

Let fk be a function which determines the number of k-paths sufficient for checking a given ECTLKD
formula (see [22]). Moreover, let PV = {¬p | p ∈ PV } be the set of negated propositions of PV , and
let lit: {0, 1} × PV → PV ∪ PV be a function defined as follows: lit(0, p) = ¬p and lit(1, p) = p.
Furthermore, let w, v be two global state variables. We use the formula Ig(w) :=

∧m
i=1 lit(gi, w[i]) to

encode a global state g = (g1, . . . , gm) of the model, i.e., if gi = 1, then it is encoded by w[i], and if
gi = 0, then it is encoded by ¬w[i]. The propositional formula [Mϕ,g0

]k, representing the k-paths in the
k-model, is defined as [Mϕ,g0

]k := Ig0(w0,0) ∧
∧fk(ϕ)

j=1

∧k−1
i=0 T (wi,j , wi+1,j), where w0,0 and wi,j for

0 ≤ i ≤ k and 1 ≤ j ≤ fk(ϕ) are global state variables, and T (wi,j , wi+1,j) is a formula encoding the
transition relation T .

The next step of the algorithm consists in translating an ECTLKD formula ϕ into a propositional
formula. Let w, v be global state variables. We make use of the following propositional formulas in the
encoding:

• p(w) encodes a proposition p of ECTLKD over w;

• H(w, v) :=
∧m

j=1 w[j] ⇔ v[j] represents logical equivalence between global state encodings u
and v (i.e., encodes that u and v represent the same global states);

• HKi(w, v) :=
∧

j∈Ixi
w[j]⇔ v[j] represents logical equivalence between i-local state encodings

u and v, (i.e., encodes that u and v share i-local states);

• HPi(w, v) encodes the set of all global states in which agent i is running correctly;

2The upper limit is |Q|.
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• Lk,j(l) encodes a backward loop connecting the k-th state to the l-th state in the symbolic k−path
j, for 0 ≤ l ≤ k.

The translation of ϕ at the state wm,n into the propositional formula [ϕ][m,n]
k is as follows (we give the

translation of selected formulas only):
[EXα][m,n]

k :=
∨fk(ϕ)

i=1

(
H(wm,n, w0,i) ∧ [α][1,i]

k

)
,

[EGα][m,n]
k :=

∨fk(ϕ)
i=1

(
H(wm,n, w0,i) ∧ (

∨k
l=0 Lk,i(l)) ∧

∧k
j=0[α][j,i]k

)
,

[E(αUβ)][m,n]
k :=

∨fk(ϕ)
i=1

(
H(wm,n, w0,i) ∧

∨k
j=0

(
[β][j,i]k ∧

∧j−1
t=0 [α][t,i]k

))
,

[Kt
lα]

[m,n]

k :=
∨fk(ϕ)

i=1

(
Ig0(w0,i) ∧

∨k
j=0

(
[α][j,i]k ∧ HKl(wm,n, wj,i) ∧

HPt(wm,n, wj,i)
))

,

[Klα][m,n]
k :=

∨fk(ϕ)
i=1

(
Ig0(w0,i) ∧

∨k
j=0

(
[α][j,i]k ∧ HKl(wm,n, wj,i)

))
.

Given the translations above, we can now check ϕ over Mk by checking the satisfiability of the proposi-
tional formula [Mϕ,g0

]k ∧ [ϕ]Mk
, where [ϕ]Mk

= [ϕ][0,0]
k .

2.2. Unbounded Model Checking

Unlike BMC, UMC is capable of handling the whole language of the logic. Our aim is to translate
CTLpK formulas into propositional formulas in conjunctive normal form. Specifically, for a given
CTLpK formula ϕ we compute a corresponding propositional formula [ϕ](w), where w is a global state
variable (i.e., a vector of propositional variables for representing global states) encoding these states of
the model where ϕ holds. To calculate the actual translations we use either the QBF or the fixed-point
characterisation of CTLpK formulas. Below, we recall the necessary notions.

2.2.1. Formulas in CNF and QBF

Let PV be a finite set of propositional variables. A literal is a propositional variable p ∈ PV or its
negation ¬p. A clause is a disjunction of a set of zero or more literals l[1] ∨ . . . ∨ l[n]. A disjunction of
zero literals is taken to mean the constant false. A formula is in a conjunctive normal form (CNF) if it
is a conjunction of a set of zero or more clauses c[1] ∧ . . . ∧ c[n]. An assignment A is a partial function
from PV to {true, false}.

In our method, in order to have a more succinct notation for complex operations on boolean formu-
las, we also use Quantified Boolean Formulas (QBF), an extension of propositional logic by means of
quantifiers ranging over propositions. The BNF syntax of a QBF formula is given by:

α ::= p | ¬α | α ∧ α | ∃p.α | ∀p.α.

The semantics of the quantifiers is defined by ∃p.α iff α(p ← true) ∨ α(p ← false), and ∀p.α iff
α(p ← true) ∧ α(p ← false), where α ∈ QBF, p ∈ PV and α(p ← q) denotes substitution with
the variable q of every occurrence of the variable p in formula α. We will use the notation ∀v.α, where
v = (v[1], . . . , v[m]) is a vector of propositional variables, to denote ∀v[1].∀v[2] . . .∀v[m].α. For a
given QBF formula ∀v.α, we can construct a CNF formula equivalent to it by using the algorithm forall
[14].
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Our aim is to translate the whole CTLpK language into boolean formulas. To this aim, we first need
to translate CTLpK formulas into QBF form. Before doing so, we need to be able to present the CTLpK
language in terms of fixed-points. This is shown in the next subsection. In our presentation, we follow
and adapt definitions given in [2].

2.2.2. Fixed-point characterisation of CTLpK

Let M = (G, Q, g0, T,∼1, . . . ,∼n,∼O
1 , . . . ,∼O

n , V ) be a model defined as in Sec. 2.1. Notice that the
set 2G of all subsets of G forms a lattice under the set inclusion ordering. Each element G′ of the lattice
can also be thought of as a predicate on G, where the predicate is viewed as being true for exactly the
states in G′. The least element in the lattice is the empty set, which corresponds to the predicate false,
and the greatest element in the lattice is the set G, which corresponds to true. A function τ mapping
2G to 2G is called a predicate transformer. A set G′ ⊆ G is a fixed point of a function τ : 2G → 2G if
τ(G′) = G′.

Whenever τ is monotonic (i.e., when P ⊆ P ′ implies τ(P ) ⊆ τ(P ′)), a function τ has a least fixed
point denoted by µZ.τ(Z), and a greatest fixed point, denoted by νZ.τ(Z). When τ is monotonic and

⋃
-

continuous (i.e., when P1 ⊆ P2 ⊆ . . . implies τ(
⋃

i Pi) =
⋃

i τ(Pi)), then µZ.τ(Z) =
⋃

i≥0 τ i(false).
When τ is monotonic and

⋂
-continuous (i.e., when P1 ⊇ P2 ⊇ . . . implies τ(

⋂
i Pi) =

⋂
i τ(Pi)), then

νZ.τ(Z) =
⋂

i≥0 τ i(true) (see [20]).
In order to obtain fixed-point characterisations of the modal operators, we identify each CTLpK

formula α with the set 〈α〉M of the states in M at which this formula is true, formally 〈α〉M = {s ∈ G |
M, s |= α}. If M is clear from the context we omit the subscript M. Furthermore, we define functions
AX,AY,Ki from 2G to 2G as follows:

• AX(Z) = {g ∈ G | ∀g′ ∈ G if (g, g′) ∈ T, then s′ ∈ Z},

• AY(Z) = {g ∈ G | ∀g′ ∈ G if (g′, g) ∈ T, then s′ ∈ Z},

• Ki(Z) = {g ∈ G | ∀g′ ∈ G if (g0, g′) ∈ T ∗ and g ∼ g′, then g′ ∈ Z},

Observe that 〈Oα〉 = O(〈α〉), for O ∈ {AX,AY,Ki}. Then, the following temporal and epis-
temic operators may be characterised as the least or the greatest fixed point of an appropriate mono-
tonic (

⋂
-continuous or

⋃
-continuous) predicate transformer (see [4, 2]): 〈AGα〉 = νZ.〈α〉 ∩ AX(Z),

〈A(αUβ)〉 = µZ.〈β〉 ∪ (〈α〉 ∩AX(Z)), 〈AHα〉 = νZ.〈α〉 ∩AY(Z).

2.2.3. Unbounded Model Checking on CTLpK

Given a model M , we encode its states like for BMC in Sec. 2.1.1. Now, our aim is to translate CTLpK
formulas into propositional formulas. Specifically, for a given CTLpK formula β we compute a cor-
responding propositional formula [β](w), which encodes those states of the system that satisfy the for-
mula. Operationally, we work outwards from the most nested subformulas, i.e., the atoms. In other
words, to compute [Oα](w), where O is a modality, we work under the assumption of already having
computed [α](w). To calculate the actual translations we use either the fixed-point or the QBF charac-
terisation of CTLpK formulas. For example, the formula [AXα](w) is equivalent to the QBF formula
∀v.(T (w, v)⇒ [α](v)). We can use similar equivalences for formulas AYα, Kiα. More specifically, we
use three basic algorithms: The first one, implemented by the procedure forall [14], is used for formulas
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Figure 1. Architecture of VerICS

Oα such that O ∈ {AX,AY,Ki}. This procedure eliminates the universal quantifier from a QBF for-
mula representing a CTLpK formula, and returns the result in a conjunctive normal form. The second
algorithm [8], implemented by the procedure gfpO, is applied to formulas Oα such that O ∈ {AG,AH}.
This procedure computes the greatest fixed point. For formulas of the form A(αUβ) we use the third
procedure, called lfpAU , which computes the least fixed point. In so doing, given a formula β we ob-
tain a propositional formula [β](w) such that β is valid in the model M iff the propositional formula
[β](w) ∧ Ig0(w) is satisfiable.

3. Implementation

The architecture of VerICS is shown in Fig. 1. The system consists of:

• Estelle to Intermediate Language (IL) translator, which enables to handle specifications written
in a subset of Estelle [7] (the standardised language for specifying communicating protocols and
distributed systems);

• IL to timed automata translator, which, given an IL specification, generates the corresponding
network of timed automata or the global timed automaton;

• BMC module, which implements BMC-based verification for the classes of properties shown in
the figure. The SAT-solver used is MiniSat [15] or RSat [18]; the system can be configured to work
with other solvers;

• UMC module, which provides preliminary implementations of UMC verification methods for
properties described above. The module is integrated with a modified version of the SAT-solver
ZChaff [26];

• Splitter module, which performs reachability verification on abstract models generated for timed
automata.

VerICS has been implemented in C++; its internal functionalities are available via a interface written
in Java. The current distribution (binaries of a standalone program to be run under Linux, or a client
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version which can work under an arbitrary Java-supporting operating system) can be downloaded from
http://verics.ipipan.waw.pl. A more detailed description of the tool is presented in the following
section.

4. VerICS - an Overview

Our model checker can be downloaded from the web page of the address http://verics.ipipan.waw.pl.
The page offers two kinds of binaries: the full (standalone) version of VerICS to be run under Linux (the
additional requirement is the Java runtime environment (JRE) version 1.5 or later), and the graphical
interface of the client for any Java-supporting operating system (in this case, JRE version 1.5 or later,
and the internet connection on the port 8080 are required). It can be run by the file run.bat or run.sh,
depending on the operating system. The starting screen presents the architecture of the verifier (see
Fig. 2).

In order to input a system to be tested we can use VerICS’ graphical editor which enables drawing
timed/deontic automata (Fig. 3). Each automaton of a network we consider should be given on

Figure 2. VerICS’ graphical interface and the start screen

Figure 3. The screenshots of timed automata editor
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Figure 4. Choosing a scalable benchmark (here Dining Cryptographers) to generate automata automatically

Figure 5. The screenshots of the stages of verification (left: editing a formula, right: choosing the verification
method and setting its parameters)

Figure 6. The way of presenting the results of verification for BMC and the continuous mode
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a single diagram. It is also possible to choose one of the benchmarks available (see Fig 4) to have the
automata generated automatically. After introducing the automata, we can test properties of the system.
The screenshots on Fig. 5 show some steps of the above process, i.e., editing a property, choosing a
verification method and setting up its parameters. Fig. 6 presents the way the results of verification (via
BMC) can be provided.

5. Experimental Results

One of the important elements taken into account while rating a model checker is the efficiency of its
behaviour. In this section we present some examples of multi-agent and real-time systems we tested, and
provide the experimental results obtained. All the examples are standard (scalable) benchmarks, used
typically to test efficiency of low-level verification modules. The results we obtain for them allow to
compare the effectiveness of VerICS with the other tools available.

The examples we tested were:

• Dining Cryptographers - a system consisting of n agents - cryptographers having dinner in a
restaurant, who want to know who paid for their meal: one of them or the agency. To reach
that while keeping the payer anonymous, each agent flips the coin and states aloud whether the
outcomes obtained by him and by the neighbour on his right are equal or different, saying the
opposite to what he sees if he has paid. An odd number of differences uttered indicates that a
cryptographer was the payer; an even number means that the one who has paid was the agency.

In order to show the correctness of the above protocol, we prove that the formulas specifying its
desired properties hold, while these expressing the undesired ones are false. In our tests we deal
with the following formulas:

ϕ1
D := AG(odd ∧ ¬paid1 ⇒ K1(

∨
i=2,...,n

paidi)),

ϕ2
D := AG(odd ∧ ¬paid1 ⇒

∨
i=2,...,n

K1(paidi)),

ϕ3
D := AG(¬paid1 ⇒ K1(

∨
i=2,...,n

paidi)),

ϕ4
D := AG(even⇒ K̂1

n(
∧

i=1,...,n

¬paidi)).

The formula ϕ1
D expresses that always when the number of statements “different” is odd and the

first cryptographer has not paid for the dinner, then he knows that another cryptographer paid. The
formula is proven to hold in the system.

The next formula ϕ2
D, which violates the requirements towards the protocol, says that always when

the number of the statements “different” is odd and the first cryptographer has not paid for dinner,
then he knows the cryptographer who has paid. The formula is obviously false, since the above
information should be secret - none of the cryptographers should know the payer, and an odd
number of differences means only that the one who has paid was not the agency.
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The third formula specifies the property which means that always when the first cryptographer has
not paid for dinner, then he knows that some other cryptographer has paid. This, again, is a false
property, as the agency can be the payer as well.

The formula ϕ4
D says that the n-th cryptographer knows that always when the first cryptographer

behaves correctly (i.e. follows the protocol) and the number of differences is even, then none
of the cryptographers is a payer. Unlike the other properties it is verified in a deontic model in
which it is assumed that the first cryptographer may cheat, e.g. he says “equal” while he sees
different outcomes of the flips and is not the payer. In this model the formula AG(even ⇒
Kn(

∧
i=1,...,n ¬paidi)) is not valid since the even number of differences does not ensure that

the agency paid for meal. Therefore, the operator K̂1
n is used instead of Kn. Now, the formula

K̂1
n(

∧
i=1,...,n ¬paidi) expresses that agent n knows that none of the cryptographers paid provided

the agent 1 does not cheat. This change makes the whole property true.

The results for the above formulas are presented in Fig. 7. Analysing the results one can notice that
the verification techniques applied can be seen as complementary: the UMC method gives better
results for the formulas ϕ1

D and ϕ2
D, while for ϕ3

D bounded model checking is far more efficient. In
the latter case verifying such a big system (up to 1000 cryptographers!) is possible due to the fact
that a counterexample can be found on a path which is relatively short. For the first two formulas
the length of the path should be incremented up to the model’s diameter. In addition to that, the
formulas have to be tested on several symbolic paths, which influences the size of the model we
are able to test this way.

formula n BMC [s/MB] SAT [s/MB] n UMC [s/MB]

ϕ1
D 4 0.8 / 9.2 81224 / ? 17 367.0 / ?

ϕ2
D 4 15.97 / 25.8 9359.24 / ? 9 392.0 / ?

ϕ3
D 1000 329 / 1885.0 29.67 / ? 15 421.0 / ?

ϕ4
D 3 0.72 / 7.6 601.14 / ? - – / ?

Figure 7. Experimental results for Dining Cryptographers (the star denotes that no data are available)

• Fischer’s Mutual Exclusion Protocol - a system consisting of n processes trying to enter their
critical sections, and a process which coordinates their access. The behaviour of the system de-
pends on the values δ and ∆ (δ < ∆ makes it incorrect - the mutual exclusion does not hold). The
property we have tested is expressed by the formula

ϕM := EF(
∨

i,j=1,...,n;i6=j

(criti ∧ critj)),

which states that two different processes can be in their critical sections at the same time (i.e., the
mutual exclusion is violated).

The tables in Figures 8 and 9 show the results for verifying the above protocol using the bounded
model checking method. In Fig. 8, a counterexample proving that the mutual exclusion does not
hold, is found on the path of the length 17. The table in Fig. 9 presents the process of testing
unreachability of the property in a system which satisfies the requirements. To this aim, it is
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checked alternately whether in the system there exists a free path [24] of a given length, and
whether the property holds on a path of such a length which starts at the initial state of the system.
Then, if necessary, the length of the path is incremented. In the case considered in the table it
occurred that no free path of length 53 can be found, whereas on all the shorter paths the property
tested does not hold. This implies that the property does not hold for the system at all.

BMC MiniSat
k s MB s MB satisfiable

0 0.2 4.6 0.0 2.9 no
2 1.0 8.5 0.8 9.8 no
5 2.0 13.8 27.7 37.3 no
8 3.2 19.2 1270.8 521.1 no
11 4.3 24.6 2408.3 852.1 no
14 5.6 29.9 4267.4 1527.7 no
17 7.0 35.3 590.8 419.4 YES

Total 23.3 35.3 8565.8 1527.7

Figure 8. Experimental results for the Fischer protocol with the parameters which make the mutual exclusion
violated (∆ = 2, δ = 1). The number of processes involved is 80

BMC MiniSat
k free path s MB s MB satisfiable

0 - 0.0 2.8 0.0 1.7 no
2 + 0.0 3.2 0.0 2.0 yes
2 - 0.0 3.2 0.0 2.1 no

...
20 + 0.2 6.8 1.6 5.6 yes
20 - 0.2 6.8 5.9 8.8 no

...
50 + 0.6 12.6 2670.9 206.1 yes
50 - 0.5 12.6 148.1 71.6 no
53 + 0.6 13.2 3992.1 233.1 NO

Total 10.4 13.2 10037.9 233.1

Figure 9. Experimental results for the Fischer protocol with the parameters for which the mutual exclusion holds
(∆ = 1, δ = 2). The number of processes involved is 10

Fig. 10 compares the results obtained using the UMC method provided by VerICS with these ob-
tained using some other model checkers available. The table shows that in most the cases VerICS

occurred to be more efficient.

• Timed Alternating Bit Protocol - a system consisting of two agents: a sender and a receiver,
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Parameters Time [s]
UppAal RED VerICS UMC

N = 10, ∆ = 1, δ = 2 37 53 34
N = 11, ∆ = 1, δ = 2 121 141 46
N = 12, ∆ = 1, δ = 2 580 304 59
N = 13, ∆ = 1, δ = 2 - 657 88
N = 15, ∆ = 1, δ = 2 - - 154
N = 18, ∆ = 1, δ = 2 - - 376
N = 20, ∆ = 1, δ = 2 - - 491

N = 10, ∆ = 3, δ = 4 33 53 50
N = 11, ∆ = 3, δ = 4 125 133 71

N = 10, ∆ = 2, δ = 1 7 49 97

Figure 10. A comparison of the results for the Fischer protocol, obtained using VerICS’ UMC and the tools
UppAal and RED

which exchange messages over two unreliable communication channels, choosing the channel to
be used on the basis of the round trip time of a control bit. The properties we have tested were “for
each execution of the protocol, if the receiver got an acknowledgement in the time not exceeding
t1 and the value of the bit sent was 0 then the receiver knows the value of this bit” and “for each
execution of the protocol if the receiver got an acknowledgement in the time not exceeding t1 and
the value of the bit sent was 0 then the sender knows that the receiver knows the value of this bit”,
which are expressed, respectively, by the following two formulas:

ϕ1
A := AG[0,t1]((recack ∧ bit0)⇒ KR(bit0)),

ϕ2
A := AG[0,t1]((recack ∧ bit0)⇒ KSKR(bit0)).

The results of searching for counterexamples for these properties, obtained using the BMC module
of VerICS aimed at TECTLK verification, are presented in Fig. 11. In contrast to other benchmarks
tested we provide no comparison with other tools, as, to our knowledge, there are no other model
checkers which enable TECTLK verification.

6. Final Remarks

In the paper, we presented an overview of the model checker VerICS, focusing on its new features (com-
paring with the version presented in [3]), i.e., SAT-based verification of multi-agent systems and some
extensions and improvements to real-time systems’ verification. VerICS offers several capabilities which,
to our knowledge, are available in no other tools. It is the only model checker which verifies MAS di-
rectly applying SAT-based methods, and the only one handling formulas which combine knowledge and
real time. In addition, VerICS is also able to verify RTS. The results for BMC, as well as preliminary re-
sults for UMC (obtained using our modification of the SAT-solver ZChaff), seem to be quite promising,
taking into account that the systems tested are not optimised w.r.t. the properties to be verified.
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¬ϕ1
A ¬ϕ2

A

BMC MiniSat BMC MiniSat
k s MB s MB satisfiable s MB s MB satisfiable

0 0.0 1.5 0.0 3.8 no 0.0 1.5 0.0 3.8 no
1 0.0 2.3 0.0 4.4 no 0.2 2.8 0.0 4.8 no
2 0.1 3.4 0.0 5.5 no 0.8 4.7 0.1 6.8 no
3 0.2 4.7 0.1 6.8 no 2.3 6.9 0.2 8.5 no
4 0.4 6.4 0.2 8.3 no 6.5 9.6 0.2 11.0 no
5 0.7 9.1 0.1 10.6 no 15.3 14.0 0.3 14.9 no
6 1.0 11.4 0.7 11.9 no 31.8 18.0 1.7 18.2 no
7 1.6 14.2 1.0 14.9 no 57.9 22.6 1.5 21.8 no
8 2.5 17.3 1.6 17.8 no 101.2 27.9 10.5 28.9 no
9 3.3 20.8 1.0 20.6 no 160.5 33.7 10.2 31.1 no

10 4.6 26.6 3.2 25.4 no 274.0 43.4 65.1 50.1 no
11 6.2 31.1 31.3 35.8 YES 404.3 51.0 237.5 83.7 YES

Total 20.7 31.1 39.2 35.8 1054.6 51.0 327.3 83.7

Figure 11. Experimental results for the timed alternating bit protocol
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